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Abstract

The first confirmed cases of Zika virus infection in Brazil were registered in 2015,
causing an epidemic with 440,000 to 1,300,000 people infected during 2015, as reported
by the World Health Organization. In addition, the disease has spread rapidly to
many other countries in South America, North America, and East Asia. Zika virus is
transmitted among humans through the bite of an infected mosquito of Aedes species
(Aedes aegypti and Aedes albopictus). Mosquito abundance and cases of Zika are
prevalent in areas with high temperature, high precipitation, and high population
density. In this project, we introduce topological data analysis in conjunction with
three machine learning models – random forest, generalized boosting regression, and
back propagation neural network – to forecast Zika space-time spread in Brazil in year
2018. The topological data analysis is implemented by utilizing persistent homology
features through cumulative Betti numbers.

1 Introduction

Zika virus was first identified in Uganda in 1947 from the serum of a rhesus monkey (Dick
et al, 1952; Dick, 1952). Zika belongs to the family of Flaviviridae; other flaviviruses are
dengue virus, West Nile virus, yellow fever virus, Japanese encephalitis virus (Goeijenbier
et al, 2016). During 2015, Zika disease reached an estimated 440,000–1,300,000 cases in
Brazil (Heukelbach et al, 2016; Malone et al, 2016) and has spread from Brazil to other
South American, North American and East Asian countries. Zika was declared an epidemic
disease during the years of 2015 and 2016 by the World Health Organization (WHO, 2016).

Zika is spread through the bite of an infected Aedes species mosquito, Aedes aegypti and
Aedes albopictus (CDC, 2018). The symptoms include fever, rash, headache, joint pain,
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red eyes, and muscle pain. Infection of pregnant women can lead to certain birth defects.
Weather conditions favorable for the spread of mosquitoes, such as high temperature and
high precipitation, may facilitate the spread of Zika (Tjaden et al, 2013; Rees et al, 2018;
Muñoz et al, 2017).

Several studies were performed on Zika prediction and modelling. Jiang et al (2018) pre-
dicted Zika cases and mapped the probability of Zika outbreak on a global scale using three
machine learning models, namely, back propagation neural network (BPNN), gradient boost-
ing machine (GBM), and random forest (RF). Based on the area under the curve (AUC), the
predictive ability of BPNN was the best among the three models. Box–Jenkins time series
modeling was used by McGough et al (2017), where an autoregressive model with exogenous
predictors was applied to predict Zika rate up to three weeks ahead in Colombia, El Salvador,
Honduras, Venezuela, and Martinique. The exogenous predictors included Google trends,
data from Twitter microblogs, HealthMap digital surveillance system, and historical official
cases counts. Teng et al (2017) used autoregressive integrated moving average (ARIMA)
model for predicting Zika cases worldwide with an exogenous predictor being the Google
search activity for the keyword “Zika” from 12 February 2016 to 9 November 2016 (epi-
demiological weeks 6 to 45). Pearson product-moment correlation was used as a measure of
temporal correlation between the accumulative volumes of Zika-related search queries and
the cumulative numbers of reported cases.

In addition, mathematical models were used in the following studies. Suparit et al (2018)
developed a vector-borne compartmental model to analyze the spread of Zika virus during
the 2015–2016 outbreaks in Bahia, Brazil. Muñoz et al (2017) applied a two-vector one-host
susceptible-infected-removed (SIR) model to forecast the areas in South America with high
Zika rates. The analysis facilitated the discussion on how climate factors like temperature
and rainfall might affect the transmission of Zika, chikungunya, and dengue disease. The
results showed high spread rate in the northeastern Brazil, which is the epicenter of the
epidemic. Mordecai et al (2017) used mechanistic transmission models to find how the
probability and magnitude of transmission for Zika, chikungunya, and dengue change with
average air temperature. The study concluded that the maximal transmission occurs in
the temperature range of 26–29 ◦C, controlling other factors such as population size and
socioeconomic factors.

In our project we introduce the use of topological data analysis (TDA). The fundamental
advantage of TDA over the traditional models referenced above is that topological models use
spatial information in a computationally efficient manner. For example, areas with greater
amounts of precipitation are generally associated with higher mosquito abundance (Lo and
Park, 2018; Muñoz et al, 2017). TDA explores the structure of the precipitation data by
utilizing computational geometry and topology that provides us with information about the
data shape useful for predicting Zika rates. In addition, applying TDA in bio-surveillance
projects is still a new approach.

Lo and Park (2018) used persistent homology features such as H0, H1, and maximum H1
lifetime of Zika population locations in each state in Brazil as predictors. In addition,
population density and average temperature were used as predictors in a linear regression
model. The results showed an improvement of the model performance compared to the
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model without persistent features through higher adjusted R2 and lower leave-p-out cross-
validation mean squared error. Costa and Škraba (2014) applied persistent homology to
compare time series of influenza-like illness (ILI) patients in Portugal and Italy for the flu
seasons of 2008–2013. Torres et al (2016) used Ayasdi platform to create topological models
that cluster data. In a similar manner, Siddiqui et al (2018) used TDA for data clustering.

We aim to predict the Zika rate in each of the 26 states in Brazil in January–August 2018,
by incorporating TDA through using persistent homology features of precipitation in year
2017 in conjunction with three machine learning models: random forest, generalized boosting
regression, and back propagation neural network.

Our contribution is as follows: we introduce cumulative Betti numbers of the Vietoris–Rips
filtration of the precipitation point cloud in year 2017 in each state as predictors in the
models. Cumulative Betti 0 numbers is considered a robust method. We also calculate the
number of H0 features and use it as a predictor. In addition, we use flexible machine learning
models for prediction, not only linear regression as in Lo and Park (2018). Meteorological
factors (average annual temperature and average annual precipitation) and socioeconomic
factor (population density) were used as the exogenous predictors in our three machine
learning models.

The remainder of the paper is organized in five major sections: data description, methodology
for epidemiological forecasting, validation metrics, results, and discussion. In Section 2, we
provide information on the collected Zika rate, population density, and atmospheric data.
We introduce our statistical and machine learning forecasting methodology and topological
data analysis in Section 3. Section 4 lists the validation metrics, Section 5 is devoted to
validation of the proposed modeling approaches to prediction of Zika rate in Brazil. Finally,
the paper is concluded with discussion and future work in Section 6.

2 Data description

Data on the Zika rate per 100,000 inhabitants from January 2017 up to August 2018 were
obtained for each of the 26 states of Brazil from monthly reports published by the Ministry
of Health of Brazil (MHB, 2018).

Since Zika virus transmission is associated with air temperature and precipitation (e.g., see
Tjaden et al, 2013; Rees et al, 2018; Muñoz et al, 2017), we collected monthly data of air
temperature, precipitation and found the average per year in each state. The data were
collected from World-Weather-Online (2018) in each state for January 2017–August 2018.

Also, Zika is anticipated to spread easily in highly populated areas (Lo and Park, 2018;
Gardner et al, 2018). Thus, we added the population density of each state as a predictor.
We used World-Atlas (2018) to calculate the population density, through dividing the total
population in each state, according to 2014 census, by its area (km2).
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3 Methodology for epidemiological forecasting

3.1 Topological data analysis

Topological data analysis (TDA) is a rapidly emerging methodology which appeared in the
works of Edelsbrunner et al (2000), Zomorodian and Carlsson (2005), and Carlsson (2009)
on persistent homology. TDA explores the structure of the data by utilizing computational
geometry and topology that provide us with information about the data shape at multiple
resolution levels in Euclidean space or other metric spaces (Chazal and Michel, 2017).

To start TDA, we build a simplicial complex on top of the point cloud data. Simplicial
complexes is the basis in investigating the shape of the data and they are mathematically
and computationally tractable (Singh et al, 2007; Carlsson, 2009). Next are the definitions of
basic topological concepts that we use in our analysis. Specifically, we use Vietoris–Rips (VR)
filtration with Euclidean metric.

Definition 1 (Vietoris–Rips complex) For a point cloud P with dimension m as a subset
of Rm, the Vietoris–Rips complex Vε(P ) (the VR complex over the point cloud P with scale
ε) is defined as Vε(P ) = {σ ⊆ P |d(q, p) ≤ ε, ∀p 6= q ∈ σ}.

The definition implies that a VR complex at ε consists of all subsets σ in P such that the
pairwise distance of any non-identical points in σ is less than or equal to ε.

Definition 2 (k-simplex) A k-simplex is the convex hull of k+1 points in Euclidean space,
where a set of points is said to be convex if it has line segments connecting each pair of
points. So the convex hull is the intersection of all convex sets containing k+1 points. A
vertex is defined as 0-simplex, edge as 1-simplex, triangle as 2-simplex, and tetrahedron as
3-simplex.

Using the simplex definition we define the simplicial complex which is a collection of simplices,
to look at the shape of the data.

Definition 3 (Simplicial complexes) Let σ, τ , and δ be simplices, then a simplicial com-
plex is a finite collection of simplices K such that
1) σ ∈ K and τ ⊂ σ implies τ ∈ K, and
2) σ, δ ∈ K implies σ ∩ δ is either empty or a common face of both.

We build the simplexes on the top of the point clouds, then we extract the topological features
of the data like connected components and holes. H0 represent the connected components
and H1 is the holes. In this project our point cloud dimension is in R.

Definition 4 (Betti number) The k-th Betti number is the rank of the k-th homology
group of a topological space. The βk counts the number of k-dimensional features of a sim-
plicial complex. For example, β0 gives the number of connected components, β1 gives the
number of holes, and β2 gives the number of voids.

We have only connected components, thus we calculated the β0 numbers for varying ε, which
gives us the number of connected components at each of these ε values.
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In our project we introduce cumulative Betti numbers, which is a more robust method for
generating predictors in Zika rates forecasting models.

Definition 5 (Cumulative Betti numbers) The sum of Betti numbers βk up to a speci-
fied ε value. For n values of ε, the n cumulative k-th Betti numbers are

∑j
i=1 βk(εi), where

j = 1, . . . , n.

Now we explain how the Vietoris–Rips filtration is performed. The filtration starts with a
ball of radius 0 that is called ε-ball around each point. As we increase ε, the balls grow
bigger which allows the balls to intersect and form a simplicial complex for each ε value. A
simplicial complex for a specified value of ε is a subset of the simplicial complexes of larger
ε.

Figure 1 is an illustration of a toy example of Vietoris–Rips filtration with increase of ε.
Figure 1(a) is the point cloud representing 0-simplices with ε = 0. With further increase of
ε to 0.2 (Figure 1(b)) and to 0.5 we get connected components as 1-simplices (Figure 1(c)).
The increase of ε up to 1 in Figure 1(d) gives a loop.

(a) ε = 0 (b) ε = 0.2 (c) ε = 0.5 (d) ε = 1

Figure 1: An illustration of Vietoris–Rips filtration with an increase of ε from 0 and a
disconnected point cloud in (a); to ε = 0.5 and connected components in (c); to ε = 1 and a
loop in (d).

Cumulative Betti 0 numbers aggregate information over different values of ε, thus, this cumu-
lative feature is robust to selection of the threshold. In Section 5, we show that cumulative
Betti 0 numbers improve prediction performance of our models. The idea of cumulative
Betti numbers came from that each specified ε simplicial complex is a subset of the larger ε
simplicial complex. Figure 2 shows the cumulative Betti 0 of the state of Piaui.
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Figure 2: Cumulative Betti 0 of the state of Piaui.

3.2 Models

We applied three machine learning models to our prediction task. In addition, Bayesian
model averaging (BMA) was applied to combine predictions from the different models.

Random forest (RF) we used randomForest function in R package “randomForest” (Breiman
et al, 2018).

Generalized boosting regression model (GBM) The model is built on two techniques:
decision tree algorithms and boosting methods (Breiman, 1997; Friedman, 2001, 2002). Gen-
eralized boosting models repeatedly fit many decision trees to improve the accuracy of the
model.

Gradient boosting at the m-th step would fit a decision tree hm(x) to pseudo-residuals.
The tree partitions the input space X into Jm disjoint regions R1m , . . . , RJm and predicts a
constant value in each region

Jm∑
i=1

bjmI(x ∈ Rjm)
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where bjm is the value predicted in the region Rjm . Then the update will be

Fm(x) = Fm−1(x) + ρm

J∑
i=1

bjm1Rjm(x)

where ρm is a scaling factor is the solution to the “line search”. The bjm are the corresponding
least-squares coefficients, Here {Rjm}J1are the regions defined by the terminal nodes of the
tree at the m-th iteration.

Let γjm= bjmρm, Friedman proposes to choose a separate optimal value γjm for each of the
tree’s regions, instead of a single γm for the whole tree. The model update rule becomes:

Fm(x) = Fm−1(x) +
Jm∑
j=1

γjm1Rjm(x),

γjm = arg min
γ

∑
xi∈Rjm

L(yi, Fm−1(xi) + γ).

Which is the optimal constant update in each terminal node region, based on the loss function
L, given the current approximation Fm−1(x).

See Ridgeway (2019); Friedman (2001) for more details of the boosting algorithm. We have
used the gbm function in R in package “gbm” for the generalized boosting regression model
(Greenwell et al, 2018; Ridgeway, 2019). Since the Zika rate is continuous, we used Gaussian
distribution with number of trees in the model being 100 and interaction depth of 1 selected
using cross-validation. The regressors included in the model are: the population density,
temperature in 2017, precipitation in 2017, number of H0 features at the initial filtration,
and the cumulative Betti 0 numbers at ε = (10, 20, 30, 40, 50, 60, 70).

Back propagation neural network (BPNN) BPNN algorithm performs as follows the
data moves from input to hidden layers to output then calculate the error based on the cost
function which reflect how far the output with respect to the actual data. Our goal is to
minimize the error.

Thus the BPNN algorithm recalculate the weights for the layers starting from the first layer
which will eventually change the weights for the other layers then calculate the error each
time and keep repeating this process to finally reach optimization.

let wljk be the weight for the connection from the kth neuron in the (l-1)th layer to the jth

neuron in the lth, if we done a change in the weights ∆wljk, then that change in weight will

cause a change in the output activation from the corresponding neuron ∆alj and this will
change in all the activations in all next layers ending to a change in the cost function which
will change the error.
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Figure 3: Example of BPNN architecture

The input are the population density, temperature of 2017, precipitation of 2017, number of
H0 features at the initial filtration and the cumulative Betti 0 numbers at epsilon values (10,
20, 30, 40, 50, 60, 70). We trained BPNNs using R package using the function neuralnet in R
in package “neuralnet” Fritsch and Guenther (2016). The optimal BPNN structure selected
using cross-validation. The number of hidden nodes is 5, the number of hidden layers is 2,
and the learning rate is 0.01.

Bayesian model averaging (BMA) To evaluate prediction uncertainty we used a weighted
multi-model ensemble of future epidemiological cases. That is, we applied the Bayesian model
averaging (BMA), which allows us to combine multiple models with weights corresponding
to their most recent prediction performance.

Our BMA approach is to define model weights via root mean square error (RMSE) of fitted
ỹt by each model on the training set of data yt (t = 1, . . . , n), i.e.,

RMSE(k) =

√∑n
i=1(yt − ỹt)2

n
,

where n is the size of training data set; RMSE(k) corresponds to the k-th model, namely,
for random forest k = 1; for Generalized boosting regression k = 2; for Back propagation
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neural network k = 3. The resulting RMSE(k) leads to the following corresponding weight
of the k-th model in BMA:

1/RMSE(k)∑3
i=1 1/RMSE(i)

.

Let the predicted values from each model be Pred(k) for k = 1, 2, 3. Then the BMA forecast
with RMSE as weights is given by

PredRMSE =
3∑

k=1

1/RMSE(k)∑3
i=1 1/RMSE(i)

Pred(k).

3.3 Persistent homology features

In addition, we use topological data analysis in terms of persistent homology
(Edelsbrunner and Harer, 2010; Chazal and Michel, 2017). Vietoris-Rips fil-
tration is used to build a (simplicial complexes) using euclidean distance, from
which we can extract topological information from our point cloud data. First,
we determined the locations of weather stations in each state, then the precipi-
tation level in these location is calculated. Thus the point cloud is precipitation
level at each weather location within each state.

We calculated the number of H0 features at the initial of the filtration for each state using
the function ripsDiag in the R package “TDA” Fasy et al (2018). In addition, we calculated
the cumulative Betti 0 numbers in each state using the same function in R by plotting the
barcode as follows, we divided the barcode for each state into intervals of ε values from 0
to 70 by an increment of 10 so it is (≤0,≤10, ≤20,...,≤70), in each interval we calculated
the cumulative Betti 0 numbers. Where Betti 0 numbers is the number of horizontal lines
in the barcode that intersect with the vertical line from each ε value, this Betti 0 number
represents the number of connected components at this filtration. For example, state Piaui
has the below barcode
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Piaui

0 10 20 30 40 50 60 70
time

Figure 4: Barcode of H0 features for state of Piaui

In the interval (≤ 0) is 11 Betti 0 numbers, (≤10) is 15 Betti 0 number, in the interval (≤20)
we have 17 Betti 0 number, in the interval (≤30) we have 18 and the the rest of intervals
(≤40), (≤50), (≤60), and (≤70) is also 18.

4 Validation metrics

We use an adaptive form of out of sampling forecast where the model is trained using data
of the year 2017. The data is year 2018 up to August is used for an out-of-sample forecast
validation.We use two standard statistical measures of accuracy: root mean square error
(RSME), and mean absolute error (MAE) (Liang et al, 2018; Lu et al, 2018). Let ŷi be the
forecast value and yi be the corresponding real values, then

RMSE =

√∑n
i=1(ŷi − yi)2

n
,

MAE =
1

n

n∑
i=1

|ŷi − yi| .
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In addition, we measured the correlation between the observed and forecast values using
Pearson correlation coefficient

r(y, ŷ) =

∑n
i=1(ŷi − ¯̂y)(yi − ȳ)√∑n

i=1(ŷi − ¯̂y)2
√∑n

i=1(yi − ȳ)2
.

Lower RMSE, MAE and higher Pearson correlation coefficient imply better forecasting per-
formance.

5 Results

In our models, we used logarithmic transformation of Zika rate as a response variable since
it produce normally distributed normal probability plot to the residuals of the generalized
boosting regression as shown in Figure 5. Our predictors are population density, average
temperature, average precipitation, number of H0 features of precipitation in year the 2017
and the cumulative Betti 0 numbers.
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Figure 5: Normal probability plot of residual in Boosting regression model
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Table 1: Performance summary comparison for the four models

With persistent features Without persistent features
Method RMSE MAE RMSE MAE
Randomforest 1.216 0.995 1.262 1.032
Boosting regression 1.287 1.065 1.327 1.089
BPNN 1.617 1.323 1.948 1.560
BMA-RMSE 1.175 0.902 1.310 1.069

Table 2: Pearson correlation coefficient between predicted and actual of 2018 Zika rate with
and without persistent features models

Cor(with persistent features) Cor(without persistent features)
Randomforest 0.759 0.738
Boosting regression 0.665 0.618
BPNN 0.549 0.318
BMA-RMSE 0.710 0.641

We compared the predicted values from each model to the log-transformed Zika rate in 2018
up to August. From Tables 1 and 2 The models with the persistent features performed
better compared to the models without the persistent features. BMA-RMSE with persistent
features performed the best in predicting Zika rate of year 2018 with the lowest RMSE and
MAE. The next is Random forest model.

The model of BMA-RMSE improved by 9.4%, next the model of random forest improved
by 3.6%, Generalized boosting regression with 3% improvement and then Back propagation
neural network with 8.9% improvement compared to the model without persistent features.

Comparing with Jiang et al (2018) who used the same three models, their conclusion was
that BPNN has the best result in prediction. That is because their study has larger simulated
sample size 1224 as Jiang et al (2018) prediction was on a global level.
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Figure 6: Plot of predicted values from RF, GBM, BPNN vs. actual Zika rate 2018

We can see from Figure 6 that the BMA-RMSE performs the best in forecasting the log Zika
rate in 2018, next is Random forest.

6 Discussion

In this paper, we wanted to test the ability of persistent homology features in improving
the prediction of Zika virus in the states of Brazil by using the H0 persistent features of
precipitation and cumulative Betti 0 numbers.

High levels of precipitation can be a factor in increasing the mosquito population, we in-
vestigate the prediction performance using persistent features with three machine learning
models they are random forest, generalized boosting regression and back propagation neural
network. In addition to using Bayesian model average (BMA) with RMSE as weights to
account for uncertainty.

The results shows that BMA-RMSE with persistent features cumulative Betti 0 numbers and
number of H0 in the predictors performed the best in predicting the Zika rate in year 2018
up to August. Compared to the model with only population density, average temperature
and average precipitation. Next best is random forest model.

Future work can be done on studying other climate-sensitive epidemic disease like chikun-
gunya, and dengue in Brazil and other countries affected by such diseases and use the topo-
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logical data analysis in studying the spread of the diseases by looking at H0 and H1 features.

References

Breiman L (1997) Arcing the edge. Technical Report 486 Statistics Department, University
of California, Berkeley

Breiman L, Cutler A, Liaw A, Wiener M (2018) randomForest: Breiman and Cutler’s
Random Forests for Classification and Regression. URL https://CRAN.R-project.org/

package=randomForest, R package version 4.6-14

Carlsson G (2009) Topology and data. Bulletin of the American Mathematical Society
46(2):255–308

CDC (2018) Centers for Disease Control and Prevention (overview of influenza surveillance
in the United States). URL https://www.cdc.gov/zika/about/index.html

Chazal F, Michel B (2017) An introduction to topological data analysis: Fundamental and
practical aspects for data scientists. arXiv Preprint arXiv:171004019
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